
Tripartite Vector Representations for Better Job
Recommendation

Mengshu Liu, Jingya Wang, Kareem Abdelfatah, Mohammed Korayem
CareerBuilder LLC

Greater Atlanta Area, Georgia, US
{mengshu.liu,jingya.wang,kareem.abdelfatah,mohammed.korayem}@careerbuilder.com

ABSTRACT
Job recommendation is a crucial part of the online job recruitment
business. To match the right person with the right job, a good
representation of job postings is required. Such representations
should ideally recommend jobs with fitting titles, aligned skill set,
and reasonable commute. To address these aspects, we utilize three
information graphs (job-job, skill-skill, job-skill) from historical job
data to learn a joint representation for both job titles and skills in
a shared latent space. This allows us to gain a representation of
job postings/ resume using both elements, which subsequently can
be combined with location. In this paper, we first present how the
representation of each component is obtained, and then we discuss
how these different representations are combined together into
one single space to acquire the final representation. The results of
comparing the proposed methodology against different base-line
methods show significant improvement in terms of relevancy.

KEYWORDS
job recommendation, vector representation, location embedding

1 INTRODUCTION
Online recruiting and job portals like Careerbuilder.com, Linkedin.
com, and Indeed.com, have become the norm in the talent acquisi-
tion business. Millions of jobs are posted and even more resumes
are uploaded daily. Different machine learning and information re-
trieval models have been applied to analyze these resumes and job
descriptions, and multiple efforts have been made to match the two
parties of the recruiting process. A good job/resume representation
helps to improve many downstream products that in turn support
the company’s goal of empowering employment and helping job
seekers find jobs and the training they need. Specifically, it facili-
tates matching job seekers and employers by improving our search
and recommendation products.

The content of a job posting incorporates all aspects of a position.
Entities like job title, required skills, experience, degrees, benefits,
company culture, location, etc, can be extracted and normalized.
Among these, title, skills, and location are the top factors when
defining a job position. While a job title determines the nature of a
job, skills enrich the job title, and differentiate jobs with the same
title by identifying their niceties. In order to offer a good job match,
an accurate representation consisting of both is needed. Rather
than simply using various word representations of job title and
skills, recent works [1–3] start to consider both the text content
and the relationship between matching pairs. In our previous work,
we propose a novel representation learning based solution, which
learns job and skill vector representations into a shared latent space
using three pre-processed graphs [4]. To extend this work, we

consider the interconnection of both job title and skills to learn
the vector representation of job postings/ resumes. By using a
retrofitting model similar to the work of [5], we combine the pre-
trained representations of job title and skills into one vector to
represent a job or resume. In terms of location, majority of job
seekers prefer jobs within reasonable commute distance. For many
people, relocation is not an option, and short commute is always a
big plus. Similarly, for most companies, remote employees are not
preferred either. Therefore, we explicitly include a location vector
in our representation. To achieve quick, accurate vector search
and recommendation, we utilize FAISS [6], which is a library for
efficient similarity search and clustering of dense vectors.

Our contributions in this paper are as follows:
• The vector representation proposed is applicable for both job

postings and resumes. It’s not only a flexible representation to
obtain similar jobs or similar candidates, but also provides a direct
mapping of jobs and resumes.

• We generate a more holistic vector representation jointly
learned for both titles and skills which can be used in the job rec-
ommendation system.

•We incorporate the location explicitly included in our repre-
sentation.

•We employ retrofitting to refine the job and skill vectors using
semantic lexicons detailed in Section 3.3.

Job Postings

Resumes

Recommendation

Job Title

Skills

Location

Title
Vector

Skill
Vectors

Joint
R

epresentation
LearningParser

3D Vectorization

Title + Skills
VectorLocation Vector

Title + Skills + Location Vector

C
oncatination

Retroffitter

Faiss

Figure 1: Workflow to generate recommendations using our
tripartite vector representations.

DI2KG ’19, August 05, 2019, Anchorage, Alaska, USA Liu, et al.

2 RELATEDWORK
The two major solutions of job recommendation in existing works
are content-based representation learning and collaborative filter-
ing (CF). CF builds a very high dimension sparse matrix to maintain
the relationship between user and product [7, 8]. In our paper, this
relationship is between each pair of job and skill. Inspired by the
natural language Processing approach (NLP) of skip-gram [3], [9]
proposes to learn item embedding based on interaction history in
the form of a sequence. [10] presents an architecture of CF and
points out the common problem of cold start. CF relies on histor-
ical interactions, therefore, when a new candidate registers or a
new job is posted, no interaction record is available. Content-based
method on the other hand, makes recommendations according to
the characteristics of users and products as in [11].

Most recent works, including our proposed system, use hy-
brid approaches of both profile properties and interaction his-
tory [12]. [1, 2] jointly learns feature representation of users and
their selected items in one convolutional neural network. [13] con-
catenates the learned sparse and dense representation of user’s
activity history, query, and profile as input. In this case, the rec-
ommendation problem is treated as an extreme multi-class classi-
fication problem. The classifier is a series of non-linear activation
functions followed by a softmax. [14] employs a convolutional
neural network to encode the user profile followed by a Long short-
term memory (LSTM) [15] to encode the user’s interaction history
in training and continue the LSTM on time axis as a decoder to
predict user’s next activity in testing.

Our work is similar to the hybrid approaches in terms of learning
the embedding of job titles and skills based on both their charac-
teristics and interactions. Meanwhile, it is different that, instead of
simply pairing the related jobs and skills, our profile representation
models three specific relationships simultaneously between jobs
and required skills. Moreover, we employ retrofitting to achieve
better representation.

3 METHODOLOGY
In this section, we describe the design and methodology of our
tripartite vector representation. A job posting contains important
information of the hiring position. Most importantly it includes job
title, skills, and location. Here, we use a combined representation
vectors of job titles and skills, and obtain a vector representation for
location transformed from latitude and longitude. Figure 1 shows
the design of our method. Job posting and resume data go to an in-
house job parser, where job title/skills/location are extracted. While
titles and skills are jointly trained by a representation learning
framework (Section 3.1. Location information is also vectorized and
normalized (Section 3.2). In order to combine the tripartite, the title
representation is first retrofitted by a list of skills associated with
each job before added with the location vector (Section 3.3).

3.1 Job Title and Skill Vector
Title and skills are the defining features of any job. Embeddings
for both titles and skills are learned in the same k-dimensional
space [4], by utilizing three types of information networks from
historical job data: (i) job-job transition network, (ii) skill-skill co-
occurrence network, and (iii) job-skill co-occurrence network. Our

goal is to encode the local neighborhood structures captured by the
three networks.

For the job-job transition graph, we assume that the transition
between similar jobs x and y is more likely to happen than non-
similar jobs x and z. Let Aj

xy = ⟨wx ,wy ⟩, the dot product of the
two embedding vectors, be the affinity score between job x and job
y, and D j j (job-job) represents the transition relationship of job
triplets (x ,y, z). The objective is to learn representationW so that

O j j = min
W

−
∑

(x,y,z)∈D j j

lnσ (Aj j
xy −A

j j
xz) (1)

Where sigmoid function σ (ν) = 1
1+e−ν is used as the probability

function which preserves the order Aj
xy > A

j
xz .

Similarly, for the skill-skill graph, coexisting skills x and y which
appear on the same job posting or the same resume are closer
to each other than non-coexisting skills such as x and z. Let Dss

(skill-skill) be the set of training triplets of skills with coexisting
relationship, our objective here is

Oss = min
W ′

−
∑

(x,y,z)∈Dss

lnσ (Assxy −Assxz) (2)

Moreover, for the job-skill graph, if skill ys appears on the ad-
vertisement of job x j , its embedding vector is more similar to x j
than non-related skill zs . Given the set of training triplets D js (job-
skill), our desired vector representation of jobsW and skillsW ′ are
learned according to the objective

O js = min
WW ′

−
∑

(x j ,ys ,zs)∈D js

lnσ (Ajs
xy −A

js
xz) (3)

Finally, to achieve high quality job and skill embedding, we
optimize this joint objective function

O(W ,W ′) = min
W ,W ′

O j j +Oss +O js + λ · (| |W | |2F + | |W ′ | |2F) (4)

where λ is the coefficient of the l2 regularization term | | · | |2F to
avoid over-fitting.

Vectors of dimension size 50 are obtained for 4325 unique job
titles and 6214 skills, using joint Bayesian Personalized Ranking
(BPR) [16].

3.2 Location Vector
Location is another key factor in a job posting. Commute time mat-
ters when people are choosing a position. The common practice
when dealing with location is to pre-filter or post-filter the recom-
mendations with a fixed radius. This method has a few downsides:
1. Some jobs are less sensitive to distance than others. For example,
people are more willing to commute longer with a highly compen-
sated job than a minimum wage part-time one; 2. The system is
more difficult to implement because of the extra layer of filtering.
3. Specifically for our case where Faiss is used for similarity search,
only one index file is needed if location is embedded in the vector.

Before latitude and longitude can be added to our embedding
model, they need to be transformed since they are not on the same
scale as the title and skill vector. Geo-locations are three dimen-
sional in its nature, and to represent location in a similar fashion
as title and skill vectors, we did a transformation of latitude and
longitude, as shown in Figure 2:

Tripartite Vector Representations for Better Job Recommendation DI2KG ’19, August 05, 2019, Anchorage, Alaska, USA

x = cos(θ) × cos(ϕ) (5)

y = cos(θ) × sin(ϕ) (6)

z = sin(θ) (7)
Where θ represents the latitude and ϕ is the longitude.
Thus, location is represented as a normalized three dimensional

vector, which can be later combined with the title and skill vector.

Latitude

Longitude

Figure 2: Latitude and longitude can be converted into a
three-dimensional coordinates.

3.3 Combination of title, skill, location
Job postings with the same title might require different skill sets
at different companies in different industries. The next natural
question is how to combine the title and skill vectors together to
a personalized vector for a specific job, given both title and skill
vectors are trained in the same latent space.

To assemble the vectors back into one to represent the job post-
ing, we apply the retrofitting method [5] to combine the vectors of
the job title and all skills of the job posting. This method adjusts
the position of the job title based on the skills appeared in the job
posting. For example, consider one job posting looking for a web
developer, and a person has a recent title of JavaScript developer.
The two job titles are similar, though still different. If JavaScript is
listed as a top skill in the job posting, the distance between the job
and the resume will be shortened. This gives the person a better
place in ranking, even though the job title is not a perfect match.

In Faruqui’s work [5], they implemented a retrofitting method
to adjust any pre-trained embedding using semantic lexicons:

qi =

∑
j :(i, j) βijqj + αq̂i∑
j :(i, j) βij + αi

(8)

where qi is the modified vector, q̂i is the initial vector, qj are the
neighbors. This is derived by minimizing the distance between
initial qi and neighbors. And for their case, the results converge
after 10 iterations.

Intuitively, if we add two vectors together, the result vector
will lie in between the initial two vectors. Adjusting vectors by
adding the vectors of neighboring words will bring words similar in
meanings closer to each other. For example, in Figure 3, ˆSmile and

ˆTears are the initial vectors for two very different words, so they
are further apart in direction (cosine similarity). After the tuning
using a neighboring word: happy, the new vectors for smile and
tears are closer than before, since the tears are in the context of
"happy tears".

Figure 3: Addition of embedding vectors.

Similarly, we applied the above operation to our job posting data,
and generated a combined representation of the job posting using
title and the skills. Jobs with similar set of skills as well as the same
title will have a higher rank than the ones with the same title but
less overlapping skills. Rather than going through several iterations
as in the original paper, we only apply the updates once, as skill
vectors are not updated in the process. We can view this one time
update as fine tuning of the title vector, or the calculation of the
"job + title" vector, shown as below, where n is the number of skills
in a job posting, which are given the same weight:

qjob =
n · qtitle +

∑
qskill

2n
(9)

Location vector is then concatenated with the new vector. The
weight of the location vector can be adjusted based on how the jobs
are sensitive to distance.

qjob+location = [qjob,x ,y, z] (10)

4 RESULTS
To test and evaluate our proposed system, we use a real dataset
(jobs and users) via CareerBuilder.com. CareerBuilder operates the

DI2KG ’19, August 05, 2019, Anchorage, Alaska, USA Liu, et al.

largest job posting board in the U.S. and has an extensive growing
global presence, with millions of job postings, more than 60 million
actively searchable resumes, over one billion searchable documents,
and more than a million searches per hour.

Each job/ resume is parsed into job title, skill list, and location
(Figure 1). We then translate these three parts into their vector
representations, which are later combined to the final job posting
vector. We have also curated a list of top skills for each job title, in
case skills are not available. The curation is based on millions of
resumes and job postings, as well as human knowledge. We use
this skill list to generate a vector if no skill is given. This provides
a more accurate representation of the job than just using a job title.
These vectors all go into our recommendation engine for different
recommendation products.

We calculate the vectors on 300K actual job postings on the Ca-
reerbuilder Website, using 6 different models (FastText, Word2Vec,
Glove-6B-300 , Glove-840B-300 [17–19], and our proposed retrof-
fiter model with and without location embedding), so each job
posting has 6 vectors for comparison. For each of these vectors, we
calculate the top 50 similar vectors using FAISS. For job posting data,
a flat index method is used. For resume data, which is much larger
in size, we compress them to 16 blocks in 64-dimension and build
the inverted indexing of size 65535. Four metrics are computed for
evaluation: 1) Distance, which is the geographic distance between
the recommended job and the input. 2) In-range job counts, which is
the number of jobs within 50 miles in the top 50 recommended jobs.
3) Title match rate, which is the percentage of recommended jobs
with the same job title as the input. 4) Title coverage, which mea-
sures the title match rate within 50 miles. The results for different
models are computed and compared.

Table 1 shows that by explicitly including latitude and longitude
in our embedding, the average distance of recommended jobs is
reduced by 90%. All top 50 jobs are within a reasonable proximity
of the original input job.

Table 2 shows the number of jobs within 50 miles in the top 50
jobs increased dramatically for retrofitter with location embedding.
Both table 1 and table 2 show that the base-line methods are not
location sensitive, even though location is included in the text file.
Implicitly having location in the embedding is far from enough,
and the advantage of explicitly including location in the embedding
model is prevailing.

Table 3 shows title match rate and coverage. Our retrofittermodel
with no location embedding has a much higher title match rate and
coverage than the base-line methods as well as the retrofitter model
with location. However, the drop in performance in our location
retrofitter model purely comes from the limited relevant jobs in
close proximity, which is a trade-off we have to make. A perfect
job match from ten thousand miles away is simply not a perfect
job for most people. Even so, our retrofitter model still has a better
results in both measurements than the base-line methods.

5 CONCLUSION AND FUTUREWORK
In this paper, we discuss the representation model which can be
used for a recommendation system and it is currently being utilized
within CareerBuilder. Three facets of a job posting are considered:
job title, job skills, and location. While job title carries the most

Model Average Median STD
FastText 940.85 760.69 819.33
W2V-300 936.46 754.67 818.58
Glove-6B-300 959.54 785.40 823.14
Glove-840B-300 942.22 763.72 816.83
Retrofitter-no loc 902.918 727.087 836.275
Retrofitter-loc 90.417 70.177 95.673

Table 1: Distance statistics for different representations.

Model Average Median
FastText-300 5.637 3.0
W2V-300 5.67 3.0
Glove-6B-300 5.108 3.0
Glove-840B-300 5.503 3.0
Retrofitter-no loc 1.614 1.0
Retrofitter-loc 21.420 20.0

Table 2: Number of jobs with a distance less than 50 miles in
the top 50 jobs.

Model Carotene-Match (%) Coverage (%)
FastText-300 11.0 3.1
W2V-300 11.2 3.1
Glove-6B-300 10.6 3.0
Glove-840B-300 10.6 3.0
Retrofitter-no loc 68.9 14.7
Retrofitter-loc 14.1 5.5

Table 3: This table shows twometrics. First, it shows the per-
centage of jobs with the same title match. Second, it shows
the coverage which means the percentage of recommended
jobs within the 50 mi with the same job title.

weight in determining what a job is, skill set defines the nuances
which differs from job to job. Most job seekers are also very sensitive
to the location of a job. In our model, we encompass all three of
these aspects, and are able to give location sensitive, highly related
job recommendations to our users.

There are a number of improvements being worked on such as :
Develop an inductive learning framework to accommodate newly
emerged job titles and skills, as the current model is transductive,
and representation vectors only exist if it is in the input graph;
Incorporate more features in the job representation such as educa-
tion and previous experience; Adjust the location embedding in a
more quantifiable way to control the radius of recommended jobs;
Combine the current representation model with other models to
provide a better results; Apply different weights to skills based on
their importance to the job title.

Tripartite Vector Representations for Better Job Recommendation DI2KG ’19, August 05, 2019, Anchorage, Alaska, USA

REFERENCES
[1] Wenyi Huang, Zhaohui Wu, Chen Liang, Prasenjit Mitra, and C Lee Giles. A

neural probabilistic model for context based citation recommendation. In Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015.

[2] Duyu Tang, Bing Qin, Ting Liu, and Yuekui Yang. User modeling with neu-
ral network for review rating prediction. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[3] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

[4] Vachik S Dave, Baichuan Zhang, Mohammad Al Hasan, Khalifeh AlJadda, and
Mohammed Korayem. A combined representation learning approach for better
job and skill recommendation. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pages 1997–2005. ACM,
2018.

[5] Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris Dyer, Eduard Hovy, and
Noah A. Smith. Retrofitting word vectors to semantic lexicons. In Proceedings of
NAACL, 2015.

[6] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search
with gpus. arXiv preprint arXiv:1702.08734, 2017.

[7] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec:
Autoencoders meet collaborative filtering. In Proceedings of the 24th International
Conference on World Wide Web, pages 111–112. ACM, 2015.

[8] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for
recommender systems. In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1235–1244. ACM, 2015.

[9] Oren Barkan and Noam Koenigstein. Item2vec: neural item embedding for
collaborative filtering. In 2016 IEEE 26th International Workshop on Machine
Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2016.

[10] Lili Wu, Sam Shah, Sean Choi, Mitul Tiwari, and Christian Posse. The
browsemaps: Collaborative filtering at linkedin. In RSWeb@ RecSys, 2014.

[11] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-
based music recommendation. In Advances in neural information processing

systems, pages 2643–2651, 2013.
[12] Kyo-Joong Oh, Won-Jo Lee, Chae-Gyun Lim, and Ho-Jin Choi. Personalized

news recommendation using classified keywords to capture user preference. In
16th International Conference on Advanced Communication Technology, pages
1283–1287. IEEE, 2014.

[13] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM conference on recommender
systems, pages 191–198. ACM, 2016.

[14] Liangyue Li, How Jing, Hanghang Tong, Jaewon Yang, Qi He, and Bee-Chung
Chen. Nemo: Next career move prediction with contextual embedding. In
Proceedings of the 26th International Conference on World Wide Web Companion,
pages 505–513. International World Wide Web Conferences Steering Committee,
2017.

[15] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic modeling. In
Fifteenth annual conference of the international speech communication association,
2014.

[16] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages
452–461, Arlington, Virginia, United States, 2009. AUAI Press.

[17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146, 2017.

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 3111–3119.
Curran Associates, Inc., 2013.

[19] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Job Title and Skill Vector
	3.2 Location Vector
	3.3 Combination of title, skill, location

	4 Results
	5 Conclusion and Future Work
	References

