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ABSTRACT
DBpedia has long been one of the major hubs of the Linked Open
Data ecosystem. It is built by a largely automated process that uses
many extractors and manually curated mappings to read informa-
tion from infoboxes on Wikipedia. Given the complexity of the
task, it is not surprising that DBpedia contains different kinds of
errors, ranging from mistakes in the source text to errors in the
extractors themselves (or in the order in which they are applied).
Of particular importance are typing errors in which an entity is
assigned a type from the DBpedia ontology to which it does not
belong. These errors propagate very far, given the modern prac-
tice of relying on Knowledge Graphs (KGs) such as DBpedia for
obtaining training data through distant supervision. We posit a
way to correct these errors is through a post factum analysis of the
KG. Thus, we introduce and evaluate a KG refinement approach
that uses binary classifiers that rely on semantic embeddings of
the entities to detect and remove incorrect type assignments. Our
initial evaluation is done using a highly curated gold standard of
35 types from the DBpedia ontology and shows the method is very
promising.
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1 INTRODUCTION
Knowledge Graphs (KGs) built from Web sources have been found
effective for end-user applications such as question answering (e.g.,
YAGO [15] used in the IBM Watson System [4]) and data inter-
linking in the Linked Open Data (LOD) ecosystem. Moreover, such
KGs are the primary source of training data for NLP applications
following the distant supervision paradigm. Many approaches exist
for building and maintaining KGs: they can be manually curated;
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collaboratively edited, like Freebase [1] and Wikidata [18]; or auto-
matically extracted, like DBpedia [7]. Many companies have their
own proprietary KGs, including Facebook, Google, Microsoft, and
Diffbot, to mention a few.

Manually curated KGs tend to have high precision, often at the
expense of coverage, while KGs automatically derived from Web
sources have a high coverage but are susceptible to systematic
errors. These errors may impact public image when manifested in
user-facing applications such as web or social media search and
can have far-reaching consequences as they propagate. Detecting
and fixing these errors depends on the processes used and level of
human involvement in creating the KGs.

Despite DBpedia’s importance as a general use KG as well as its
crucial role for the LOD movement, about 12% of DBpedia triples
have some quality issues [22]. Most triples in DBpedia come from
parsing the infoboxes of articles in Wikipedia. In principle, the
infoboxes should follow strict templates with a list of attributes for
the type of entity described in the article (e.g., person, organization,
etc.). However, adherence to templates and editorial practices is
hard to enforce, especially over time.

Typing Errors. One particularly problematic error in DBpedia
concerns entity types. For example, at the time of writing, DBpedia
says that the entity dbr:Egypt1 is a dbo:MusicalArtist. Similarly,
dbr:United_Nations and dbr:European_Union are, among other
things, also classified as a dbo:Country, together with another
7,106 entities, which seems unreasonably high2, even accounting for
entities that were historically identified as such. Table 1 shows other
examples of type inconsistencies that can be identified using dis-
jointness axioms [8]. Besides incorrect type assignments, DBpedia
also suffers from the problem ofmissing types for some entities. For
example, 27% of the 30935 entities classified as a dbo:University
are not classified as an dbo:Organization.

We note that these errors, although problematic, are the ex-
ception instead of the norm in DBpedia. Moreover, we posit that,
given the complexity and inherently noisy processes through which
Wikipedia and DBpedia are created, the best way to correct these
errors is through a post factum analysis of the entity types, which
is what we seek to accomplish.

1Throughout the paper, we use the customary dbr:, dbo:, and dbp: prefixes to indicate
resources (which are entities), ontological predicates (e.g., types), and properties,
respectively.
2Wikipedia states that the United Nations have 193 members, while there are 8 other
entities that are not members but are recognized as countries by at least one UN
member.
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Table 1: Number of inconsistencies onDBpedia identified us-
ing disjointness axioms.

Disjointness Axiom Number of Entities
Place and Person 1761
Software and Company 1004
Person and University 1014
Person and Company 3892

Our Contribution. We propose the use of binary classifiers (one
per type) to predict the type(s) of DBpedia entities. The classifiers
rely on two kinds of semantic embeddings of the entities. From the
Wikipedia text, we derive word2vec-like embeddings, while from
DBpedia itself, we use PCA [17] to embed the entities based on
their ontological properties. We test our method using a manually
curated partial gold standard with 3876 entities of 35 different types
of the DBpedia ontology. The performed experiments show that
our approach is able to automatically find errors and assign types
for DBpedia entities with over 97% accuracy.

2 RELATEDWORK
In the construction of a knowledge graph, there is a trade-off be-
tween coverage and correctness. To address those problems, some
effort has been made to refine knowledge graphs. In contrast to the
knowledge graph creation methods, the refinement techniques as-
sume the existence of a knowledge graph which can be improved in
a post-processing step by adding missing knowledge or identifying
and removing errors [13].

One possible approach is to validate the knowledge graph man-
ually using human annotators. Besides being costly, this approach
is unfeasible for large databases such as DBpedia, due to its low
scalability. Because of this, most researchers focus on developing
automatic or semi-automatic solutions for knowledge graph refine-
ment.

Many of the proposed solutions aim finding erroneous relations
(i.e., the edges of the graph) between pairs of entities [3] [14] [2] [10]
[6]. Meanwhile, others works aim to find incorrect literal values,
such as numbers and dates. Identifying incorrect interlinks (links
that connect entities representing the same concept in different
graphs) between knowledge graphs has also been attempted [12].
A comprehensive survey on knowledge graph refinement methods
is presented by Paulheim (2017) [13].

To the best of our knowledge, Ma et al. (2014) [8] was the first
attempt at identifying incorrect type assertions. They proposed
using disjointness axioms to detect inconsistencies. To create the
axioms, they used association rule mining since it allows for the
discovery of implicit knowledge in massive data. The axioms are
learned from DBpedia and tested on DBpedia and Zhishi.me [11].
Although this approach is, in fact, able to identify several inconsis-
tencies, it has a few limitations. First of all, the association rules
are learned from DBpedia, which is itself a noisy dataset. Thus,
there will always be some wrong axioms. Secondly, some entities
on DBpedia are assigned to a single incorrect type. For example, the
only assigned type for dbr:Nail_polish is dbo:Person, which is
wrong. However, since there are no other types associated with this

entity, there is no axiom capable of identifying this error, because
each rule involves two classes.

In this work, we introduce resource2vec embeddings, which are
vectors, similar to word embeddings [9], that represent entities
on DBpedia. These embeddings are used as a feature for a set of
machine learning classifiers that detect if the type assigned to an
entity is correct. The intuition behind this approach is that em-
beddings of entities of the same type will be closer to one another
in an n-dimensional continuous vector space than embeddings of
entities of different types. For example, the similarity between
two vectors for entities of the type Country (e.g., dbr:Canada
and dbr:United_States) will be greater than the similarity be-
tween a vector of a country and a university (e.g., dbr:Canada and
dbr:Stanford_University).

The usage of entity embedding for type detection on DBpedia
was also proposed by Zhou et al. [23]. One important difference
between ourwork and the one presented by Zhou et al. resides in the
creation of the embedding. While they only use Wikipedia to train
their embeddings, our embeddings are trained using properties
from both Wikipedia and DBpedia. (as we explain in section 3).
Another important difference is in the dataset used for training
and testing. Zhou et al. uses DBpedia itself to create the datasets.
They query a public DBpedia SPARQL endpoint to select, for each
DBpedia type, entities as positive examples of that type. Negative
examples are chosen from a random selection of instances from
all the remaining types. We argue that this approach will create
a noisy dataset since, as we discussed, many entities on DBpedia
have incorrectly assigned types, and that is exactly the problem
that we are attempting to solve. In this work, we use a manually
curated partial gold standard for training and testing.

3 METHOD
3.1 Representing DBpedia Entities
Our approach consists of creating a semantic mapping of DBpedia
resources, which is used as a feature for a set of binary machine
learning classifiers. For that, we concatenate wikipedia2vec and
DBpedia2vec embeddings. The wikipedia2vec are word2vec-like
embeddings that represent Wikipedia entities. They are created
using Wikipedia2Vec [20], a tool that allows learning embeddings
of words and entities simultaneously, and places similar words and
entities close to one another in a continuous vector space.

DBpedia2vec are embeddings that help to represent a DBpedia
entity. They are created using the entity’s properties (i.e., predicates
in the RDF tuples) on DBpedia. Our intuition is that most entities
of the same type share the same properties. For example, countries
usually have properties such as dbo:areaTotal, dbo:capital, and
dbo:largestCity, while people are more likely to have properties
like dbo:birthDate, dbo:birthPlace, and
dbo:nationality.

To create DBpedia2vec, we create a list of all distinct proper-
ties existing in DBpedia (ignoring properties that are common
across all types on DBpedia ontology, such as dbo:wikiPageID,
dbo:wikiPageWikiLink, dbo:abstract, and dbo:sameAs). A one-
hot encoding vector is created for the entity. Each dimension of
this vector represents one of the 3480 properties of DBpedia. Then,
we apply a probabilistic principal component analysis (PCA) [17]
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to linearly reduce the dimensionality of the embeddings using Sin-
gular Value Decomposition of the data. In this way, we are able
to project the 3480-dimension embeddings to a lower dimensional
and continuous space with n2 = 300 dimensions.

3.2 Identifying and correcting erroneous types
The resource2vec embeddings are used as a feature by a binary
classifier which is trained to determine if the type assigned to a
resource is correct. One classifier is trained for each type, using
resource2vec embeddings of resources that belong to that type
as positive examples and resource2vec embeddings of randomly
selected resources from all other types as negative examples.

This approach allows us to not only identify erroneous type
assignments but also to assign the correct type to any DBpedia re-
source for which the resource2vec embedding is created, even if no
type has been assigned yet on DBpedia. We tested the classification
using three algorithms: Naive Bayes, K-nearest neighbours (K-NN),
and nearest centroids, which represents each class (i.e., each type)
by its centroid and assigns the class of the nearest centroid to test
samples [16].

4 EXPERIMENT SETUP AND RESULTS
The experiments were performed using resource2vec embeddings
created by concatenating 500-dimensional wikipedia2vec embed-
dings trained on a Wikipedia dump extracted Feb. 2019 and 300-
dimensional dbpedia2vec trained on the 2016 release of DBpedia. In
an attempt to obtain high-quality embeddings, the wikipedia2vec
embeddings were trained with 10 iterations over the articles, a
windows size of 10, and a minimum number of 10 occurrences for
words and 5 occurrences for entities.

Gold Standard. To better evaluate our classifiers, we created
a gold standard encompassing the following 35 types from the
DBpedia ontology: Aircraft, Airline, Airport, Album, AmericanFoot-
ballPlayer, Animal, Automobile, Bacteria, Bank, Book, Building, City,
Country, Currency, Food, Galaxy, HorseTrainer, Language,MilitaryCon-
flict, Murderer, MusicalArtist, MythologicalFigure, Planet, Plant, Pres-
ident, Software, Song , Sport, Swimmer, Theatre, TimePeriod, Train,
University, Volcano, andWeapon. We chose these types with the goal
of maximizing the diversity of entities while minimizing inter-type
overlap (which could potentially confuse our analysis and prelim-
inary conclusions). If the approach works well in this simplified
setting, it may be worth scaling the solution to consider all types
on DBpedia.

To build the gold standard, annotators were asked to use any
resources at their disposal (e.g., WikipediaâĂŹs own entity lists
or categories) to find examples of entities in each of the 35 types.
In total, we selected 3876 entities. The number of entities per type
varied from 94 (for the types Sport and Software) to 112 (for the type
Aircraft). All of our testing and evaluation data can be downloaded
from https://bit.ly/2FcqQQW.

The Need For Manual Annotations. An alternative to the manual
annotation and evaluation that we followed here would be exploit-
ing an independent KG (e.g., Google’s knowledge graph) for the
evaluation. In principle, such an external KG could be used to cor-
rect typing errors on its own. We attempted such an approach but

Table 2: Comparison between the algorithms used for creat-
ing binary classifiers for error detection on type assignment.

Classifier P R F1 Accuracy

Nearest Centroid 0.9753 0.973 0.9731 0.9732
k-NN 0.9583 0.9534 0.9510 0.9524
Naive Bayes 0.8913 0.8921 0.8897 0.8911

Table 3: Estimated performance of Nearest Centroid classi-
fiers on unseen entity-type pairs.

Prediction Number of Manually verified Accuracypredictions samples

Correct 251756 2448 0.9563
Incorrect 113035 1251 0.7553

ran into several difficulties. First, there is the issue of the incom-
pleteness of the external KG itself. We found that generally only
high-level types are assigned to entities in the Google KG: for in-
stance, most entities of type Aircraft in DBpedia are labeled simply
as Thing in the Google KG. Second, DBpedia interlinks to other KGs
are wrong or missing up to 20% of the time [22], therefore, finding
equivalent entities on different knowledge graphs is a challenging
task itself. Finally, the ontology of the KGs may be significantly
different, for example, we noticed that other KGs (e.g., YAGO), has
significantly more types than DBpedia.

4.1 Comparing classifiers
Our first experiment consisted of comparing popular binary classi-
fiers suitable for the task. We used 70% of the entities of the gold
standard for training the classifiers and the remaining 30% for test-
ing them. Hyperparameter tuning for k-NN was performed using
5-fold cross-validation. Table 2 shows the results. The reported val-
ues are an average of 10 runs on different training/testing splits of
the gold standard. For each run, we averaged the precision, recall,
F1-Score, and accuracy of the 35 binary classifiers. The Nearest
Centroid approach leads to better classifiers, achieving more than
97% of performance in all metrics, while the Naive Bayes classifiers
achieved the lowest performance.

4.2 Predicting types of unseen entities
Motivated by the high accuracy of the binary classifiers, we tested
whether the proposed supervised approach could detect incorrect
type assignments among other entities of the 35 classes in our gold
standard. For this, we used the best performing algorithm (Near-
est Centroid). In total, 364,791 entity-type pairs were checked3 by
the classifier: a positive classification confirmed the type predic-
tion while a negative classification disproved it. Human annotators
verified the output of the classifiers for a random sample of 3699
predictions. Table 3 shows the results.

Upon further inspection of the false negatives, we noticed some
discrepancies in the way entities are classified in DBpedia which

3Some entities had multiple types.



KDD 19 (DI2KG Workshop), August 5, 2019, Anchorage, Alaska Daniel Caminhas, Daniel Cones, Natalie Hervieux, and Denilson Barbosa

were not reflected in the way we created our gold standard. The
most notable example concerns the class dbo:Animal, for which
most instances correspond toWikipedia articles describing a species
(e.g., dbr:American_black_bear). In fact, all instances in our gold
standard correspond to species. In our test sample, however, we
found many individual racehorses also classified as dbo:Animal
(e.g., dbr:Fusaichi_Pegasus). Not surprisingly, all such instance-
type pairs were (correctly in our opinion) rejected by our classifier.
To further illustrate our claim, we note that racehorses have prop-
erties like dbo:honours, dbo:owner, dbo:sex, dbo:trainer, and
dbp:earnings, while most other animals have properties such as
dbo:family, dbo:genus, dbo:kingdom, dbo:order, dbo:phylum,
and dbo:conservationStatus.

We found other similar cases involving other ontology types. In
order to more accurately evaluate the effectiveness of the classifier,
we removed from our analysis the following cases:
• Animals that are also an instance of type racehorse.
• Cities that are fictional or medieval cities.
• Automobiles that are buses or trucks.
• Songs that are rhymes, prayers, hymns, lullabies, or marches.
• Countries that are fictional countries, former sovereign states,
or former kingdoms.

The manual inspection showed that the proposed approach has
a very low false positive rate of less than 5%, which is very encour-
aging. Moreover, the method is correct about 75% of the times it
claims a type assignment is wrong, for a false negative rate below
25%. The performance of the classifier varies across classes: for
example, both false positive and false negative rates for entities
tagged as dbo:HorseTrainer is 0%. On the other hand, the false
positive rate for the class dbo:President is 13%. That is probably
because dbp:President is a more generic class, which can include
presidents of countries, universities, companies, institutes, asso-
ciations, councils, etc. This could be addressed by increasing the
diversity of entities in the training data.

4.3 Predicting with YAGO types
Since DBpedia entities are annotated with types from YAGO, we
also attempted to leverage these links for identifying and correcting
typing errors in DBpedia. However, these two ontologies cannot
be easily aligned: we found 419,297 unique objects with a YAGO
prefix for which there was a predicate rdf:type associated with
a DBpedia entity. Thus, our attempt to use YAGO boiled down to:
for each DBpedia entity in our gold standard4, we created a one-
hot encoding vector that represents the YAGO types assigned to
that entity, then we apply PCA to reduce the dimensionality of the
one-hot encoding vectors. From those vectors, we created binary
classifiers as in Section 4.1. The results are shown in Table 4.

Although the embeddings created using all YAGO types seem
to carry a strong signal, it is clear we need a way to filter out a
large number of types before we can obtain embeddings for entities
other than in the gold standard. Furthermore, we observed several
entities in the gold standard with identical sets of YAGO types,

4We were not able to obtain embeddings for all entities among the 35 types, let alone
embeddings for all entities in DBpedia, due to the time complexity of PCA analysis
and the size of the input matrix.

Table 4: Classification results using embeddings created
from YAGO types

Classifier P R F1 Accuracy

Nearest Centroids 0.935 0.9276 0.9252 0.9259
K-NN 0.8999 0.8933 0.8916 0.892
Naive Bayes 0.8794 0.8445 0.8386 0.8432

which means that the classifiers may be overfitting, rendering the
numbers in Table 4 unreliable.

5 CONCLUSION AND FUTUREWORK
This paper presented an effective approach for detecting erroneous
type assignments in a KG by leveraging an annotated corpus of
text and the properties in the KG itself. The assumptions behind
the method are that the input KG is of sufficient quality so that
the initial type assignment is not random. Moreover, our method
can be applied post factum, without requiring any changes to the
already complex KG generation process. We evaluated the approach
on a large and carefully created gold standard, and obtained very
encouraging results. We used the best performing binary classifiers
to verify the type assignment for thousands of unseen entity-type
pairs and found out that the false positive rate of the method is
below 5%, while the false negative rate is below 25%. We believe
these results are encouraging. The method also found some incon-
sistencies in the way types are assigned to entities.

There are several interesting directions for future work. First, the
method described here is supervised, and although expanding our
gold standard to encompass the 537 classes in DBpedia certainly
seems within reach of its community, we seek to develop a fully
unsupervised method for selecting representative entities for each
class to be used to derive the centroids. Another interesting idea
would be to perform a detailed assessment of the DBpedia ontology
and try to identify types that are too broad and should be split
into multiple subtypes, and types that are too specific and could
be merged with others. Also, we believe it would be interesting to
evaluate our method for the task of identifying missing types (as
opposed to incorrect ones). Finally, although we tested on DBpedia
only, we believe our method could be easily adapted to find errors
on other knowledge graphs provided one can find an annotated
text corpus.
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