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ABSTRACT
We outline the use of the tool FAMER to address the schema and
entity matching tasks for the DI2KG 2019 challenge. FAMER sup-
ports both the static and incremental matching and clustering of
entities from multiple sources. To alleviate entity matching, we first
identify matching properties in the provided datasets based on the
similarity of property names and instance values. This approach
utilizes the given training data to derive property matches from
entity matches. For entity matching, we consider multiple config-
urations to determine entity similarities with the optional use of
word embeddings.
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1 INTRODUCTION
Knowledge graphs (KG) physically integrate numerous entities with
their properties (attributes) and relationships as well as associated
metadata about entity types and relationship types in a graph-
like structure [5]. A product KG may thus contain a huge number
of products of many types where the product types can also be
organized in an ontological structure, e.g., to differentiate camera-
related products into different kinds of cameras (DSLR, mirrorless,
...), camera parts (e.g. camera bodies, lenses, ...) and different kinds of
camera accessories. The KG entities and relationships are typically
integrated from numerous sources, such as other knowledge graphs,
databases, web pages, documents etc. Integrating such sources
implies a matching and fusion of equivalent entities and relations.

The initial KG may be created from a single source (e.g., a pre-
existing knowledge graph such as DBpedia or the product KG of a
specific merchant) or a static integration of multiple sources. KG
completion (or extension) refers to the incremental addition of new
entities and relationships. The addition of new entities requires
solving several challenging tasks:
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(1) preprocessing of new datasets for data profiling (e.g., to de-
termine the cardinality and value ranges of properties) and
data cleaning

(2) determining the entity type (classification) of new entities
(3) incremental schema matching to match and group (cluster)

properties of new entities with known properties in the KG
(4) incremental entity resolution to match and cluster new enti-

ties with already known entities in the KG
(5) fusion of newly matching entities
(6) addition of relationships for new entities.
At the Univ. of Leipzig, we are developing a scalable framework

for the end-to-end generation and maintenance of KGs building
on our previous work on learning-based product matching [3] and
parallel entity resolution [2]. The core of this framework is a new
parallel tool called FAMER (FAst Multi-source Entity Resolution)
for both static and incremental matching and clustering of entities
from multiple sources [7]. FAMER first determines or updates a
so-called similarity graph between entities of a certain type and
then applies a clustering approach to determine or update clusters
of matching entities. These clusters group matching entities from
different sources and thus support both the fusion of matching
entities as well the tracking of original entities (which is also helpful
for a possible cluster repair).

We address both the schema and entity matching tasks of the
DI2KG 2019 challenge for KG integration of product entities about
cameras. We are not providing a full-blown schema (property)
matching solution but focus on a simple approach to support entity
matching on the most frequent properties. We also use FAMER
for building a similarity graph on properties and to determine and
incrementally update clusters of matching properties.

In the next section, we provide an overview about FAMER. We
then describe how we address preprocessing and schema matching
(Sec. 3) and entity matching (Sec. 4) for the DI2KG 2019 challenge.
Obtained results will be described in the final version of this paper.

2 FAMER OVERVIEW
Figure 1 illustrates the main components of the FAMER framework
for incremental matching. As outlined in [8][9][7], the framework
consists of two major configurable phases (gray boxes) named
Linking and Clustering. In the Linking phase, a similarity graph
is generated so that similar entities are linked pairwise with each
other. This phase starts with blocking on selected properties so
that only entities of the same block need to be compared with each
other. In the initial version of FAMER, pairwise matching is man-
ually configured by specifying a combination of several property
similarities that has to exceed a minimal similarity threshold. We
have now also added support for learning-based linking configura-
tions, e.g. using random forest classification, which utilizes training
data of matching and non-matching entity pairs. Similar to [4],
we also added support for word embeddings, e.g. using FastText,
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Figure 1: Incremental entity resolution with FAMER

to replace the value of string (textual) properties by their embed-
dings for a possibly improved similarity computation. Depending
on the method to determine potential matches, the edges in the
similarity graph include a similarity score to indicate the match
likelihood. The second part of FAMER uses the similarity graph
to determine entity clusters where a cluster groups all matching
entities from the different input sources. Clustering can be based on
different algorithms including the so-called CLIP approach favoring
so-called strong inter-source links that connect maximally similar
entity pairs from both sides [9].

FAMER is able to update the output result for new entities and
new sources [10] as needed for KG completion. In this case, the
input is a stream of new entities from known sources or from a new
source plus the already determined entity clusters (stored in the
KG) (Figure 1). Here, the Linking part focuses on the new entities
and does not re-link among previous entities. The output of the
linking is an updated similarity graph composed of existing clusters
and the group of new entities and the newly created links (the light-
blue colored group in Figure 1). The Incremental Clustering/Fusion
part integrates the group of new entities into clusters. The updated
clusters are fused in the Fusion component so that all entities are
represented by a single entity called cluster representative.

FAMER is implemented using Apache Flink so that the calcu-
lation of similarity graphs and the clustering approaches can be
executed in parallel on clusters of variable size. For the implemen-
tation of the parallel clustering schemes we also use the Gelly
library of Flink supporting a so-called vertex-centric programming
of graph algorithms to iteratively execute a user-defined program
in parallel over all vertices of a graph. The vertex functions are
executed by a configurable number of worker nodes among which
the graph data is partitioned, e.g., according to a hash partitioning
on vertex ids.

3 PREPROCESSING AND SCHEMA
MATCHING

To illustrate the data quality problems in the given dataset of the
DI2KG challenge, we show in Table 1 two matching Nikon camera
products from different sources. We observe significant differences
in the set of properties and property values. For example the first
entity owns the property features while the second camera does

Table 1: Example Raw Data

property value
"35mm equivalent" "25-300mm"

"<page title>"
"Nikon Coolpix S6800 Digital
Camera (Black) | UK Digital
Cameras"

"brand" "Nikon"
"camera resolution" "16 Megapixels"
"colour" "Black",
"features" "Slimline"
"hd video" "Full HD (1080P)"
"lcd size" "3.0”"
"lens tele mm" "300"
"lens wide mm" "25"
"mpn" "VNA520E1"
"optical zoom" "23"
"optical zoom range" "18x and higher"

"<page title>"
"Nikon Coolpix S6800 Price in
India with Offers, Reviews & Full
Specifications | PriceDekho.com"

"color" "Black",

"amazon" "Infibeam Ebay Homeshop18
Snapdeal Flipkart"

"digital zoom" "4x"

"bangalore" "Hyderabad Chennai Mumbai
Delhi Pune"

"approx resolution" "16 MP"
"external memory" "Yes"
"face detection" "NA"
"gps" "NA"
"hdmi" "NA"
"maximum shutter speed" "1/2000 sec"
"metering" "NA"
"minimum shutter speed" "1 sec"
"optical zoom" "18x"
"screen size" "3 Inches"
"usb" "Yes",
"video display resolution" "NA"
"wifi" "Yes; Wi-Fi 802.11 b/g/n"

neither contain this property nor the corresponding value (Slim-
line). This may happen even among entities of the same source.
Moreover, the same property values are not represented similarly
in different entities. For example in the first camera the property
camera resolution with the value 16 Megapixels is represented as
"approx resolution": "16MP" for the second camera. Altogether, the
challenge includes 24 sources with vastly heterogenuous schemas.
For example, the source "ebay" has over 2000 properties some of
which are likely duplicate properties such as "maximum shutter
speed" and "max shutter speed".

Before we perform an incremental schema matching and entity
matching we first perform preprocessing on the input dataset to de-
rive some statistics and to perform data cleaning steps. In particular,
we focus both entity and schema matching on the most frequent
properties since infrequent properties are unlikely to be present for
all matching pairs of entities so that their use is of limited value. For
example the property "energy consumption per year" only occurs
in one entity in the entire dataset and will therefore most likely not
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have a corresponding property in other sources and is therefore use-
less for entity resolution. For each source we therefore determine
the k (<= 10) most frequent properties.

We also perform data cleaning to harmonize property values
to make similarity computations more meaningful. For example,
we can see that different units are used for "weight" in different
sources. Comparing values in ounces with values in grams would
lead to a poor similarity value and we therefore transform both
into the same unit. Further data cleaning procedures are performed,
such as lowercasing strings and using canonical abbreviations.

Incremental schema matching Schema matching or schema
alignment consists of determining which properties of different
sources correspondwith each other. There are a plethora of different
approaches like e.g., instances-based or linguistic matchers that try
to tackle this problem (see [6] and [1] for an overview). FAMER
currently expects to be provided with already matched properties
for entity resolution. For the DI2KG challenge, we however need to
first align the properties before we can apply our entity resolution
approach.

Our approach makes use of the provided training data for entity
resolution task that includes a subset of the true matching entity
pairs. While the provided training data contains example entities for
all sources, entity matches are only available for a subset of source
combinations. For example we are given entity matches for "canon-
europe.com" and "price-hunt.com", but not for the combination of
"canon-europe.com" and "ebay.com". However we have matches for
"price-hunt.com" and "ebay.com". We can therefore first align the
properties of "ebay.com" and "price-hunt.com" and then integrate
"canon-europe.com" into this intermediary result using the given
entity match between "canon-europe.com" and "price-hunt.com".

We therefore follow an incremental property clustering approach
that starts with the pair of sources with the most matches in the
training data and consider the further sources for propertymatching
in the order of their number of matches. For each source s we
thus use the training data to count the number of entities that
have s as provenance. We will refer to this as the provCount of s .
Assuming that the source with the highest provCount has already
been integrated into the KG, we start property matching with the
source that has the second highest provCount and continue with
the further sources in descending order of their provCount until all
sources are processed.

Each incremental step consists of the following procedure:

(1) Categorize properties by value range
(2) Calculate property similarities by computing the weighted

arithmetic mean of property name similarity and aggregated
property value similarity

(3) Update similarity graph
(4) Cluster properties.

To avoid comparing apples with oranges all properties are first cate-
gorized by looking at the property value range. Possible categories
are for example "string", "number" or "boolean". Looking at Table 1
for example the properties "optical zoom" and "color" clearly belong
to different categories since the former mainly has number values
and the latter consists of strings.

In the next step we calculate a combined similarity between
properties of a new source and already considered properties of

Table 2: Example Data after Preprocessing and Property
Alignment

property value
page title nikon coolpix s6800 digital black
manufacturer nikon
resolution 16 mp
color black
optical zoom 18x
screen size 3.0 inch
page title nikon coolpix s6800
resolution 16 mp
color black
optical zoom 18x
digital zoom 4x
screen size 3.0 inch

previous sources of the same category. The similarity between two
properties is based on the similarity of property names and the
aggregated similarity of all property values. The property values
are derived from all relevant matches for the considered sources
from the training data.

The calculated similarites are used to build and update a similar-
ity graph consisting of the properties as vertices and the similarities
as edges. This graph is given to FAMER’s clustering module to deter-
mine new property clusters. This is iteratively done until no more
sources are left to integrate. The resulting property clusters can
now be used in the entity resolution step by fusing all members of
a cluster to a new property.

4 ENTITY RESOLUTION
FAMER assumes the knowledge of matching properties for both
blocking and pair-wise linking. We therefore use the scheme match-
ing result and data cleaning for the most frequent properties to
harmonize the entities before entity resolution. Table 2 indicates
the improved data of Table 1 after preprocessing and property align-
ment. As illustrated we consider only a subset of the properties
and both the property names and some property values have been
harmonized.

FAMER provides many options to perform entity resolution for
the prepared dataset and we aim at a comparative evaluation of sev-
eral configurations. In particular, we can apply a batch-like (static)
matching and clustering for all (24) sources at once or we can apply
an incremental approach that iteratively adds and matches one
source after the other. In both cases, we first deduplicate individual
sources (by using the linking and clustering of FAMER) before we
perform entity resolution between sources and we apply the CLIP
approach for clustering (either in its static or incremental version).

Blocking is done on the manufacturer property if needed for a
sufficiently low runtime. The camera products lacking the value of
manufacturer form a special block and are matched with all other
entities.
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Table 3: Results for schema matching on top 10 properties

(a) Quality

Measure Value
F-measure 0.686
Precision 0.615
Recall 0.775

(b) Statistics about gold
standard. Only contains
non-singleton clusters.

Measure Value
# clusters 32

biggest cluster 24

For determining the entity similarity in the linking phase we
consider several configurations with different use of property values
and with the optional use of word embeddings:

• We perform linking with a single property page title that is
existing for all entities of all sources and mostly summarizes
important product information as illustrated in Table 2.

• We concatenate the values of the top k most frequent prop-
erties (or a subset of them) into a single document-like value
and use the document similarities for linking.

• We determine and combine the pairwise property similar-
ities for a subset of the most frequent properties that are
present in most sources. To weight and combine the individ-
ual similarities we use either manually determined rules or a
learning-based approaches that utilize the provided training
data.

After evaluating the mentioned methods and configurations, we
will report the results in terms of the entity resolution quality and
efficiency.

5 PRELIMINARY RESULTS
A comprehensive evaluation of the different approaches and config-
uration was not possible since the golden truth has not been made
available by the organizers of the DI2KG challenge beforehand. We
therefore report some preliminary results for a small subset of the
data.

5.1 Schema Matching
For the evaluation of our incremental schema matching we manu-
ally created a gold standard, which only includes the top 10 proper-
ties for each source. The biggest cluster contains the attribute <page
title> which is present in all sources. The second largest cluster
has a size of 19 and contains attributes which describe the resolu-
tion of the camera. The results of our schema alignment and some
more information about the gold standard are shown in Table 3.

We can see that even for the most frequent properties this is
a very difficult task, due to the heterogeneity of these datasets.
Attributes might have the same attribute name, but contain dif-
ferent information and are not to be matched. E.g. The attribute
resolution in www.priceme.co.nz contains a technical description
about what resolution, while in all other datasets this attribute con-
tains the number of megapixel of the camera. Another problem lies
in distinguishing attributes with similar value ranges. For example
properties that have a value range that simply consists of numbers
are very similar to each other.

The obtained results are not yet of sufficient quality indicating
that inferring property matches from given entity matches is not

Table 4: Selected single-source linking results, th = 0.6

source #entities #links FP FN #GTMatches
walmart.com 195 154 0 0 3
priceme.co.nz 740 929 0 0 15
gosale.com 1002 3842 0 0 1
flipkart.com 157 216 0 0 1
eglobalcentral.co.uk 571 2678 0 0 1
ebay.com 14274 420623 3 1 17
camerafarm.com.au 120 138 0 0 1

Table 5: Results for single-source entity clustering on ebay

clustering algo FP FN #pairs #clusters CSmax
CC 81 1 9268633 3270 2930
CCP 2 4 274236 4185 309
Cntr 1 6 111926 4738 134
MCntr 81 1 9112586 3382 2898

as effective for the given dataset as we had hoped for. To obtain
better and more complete results for all properties we have started
to develop a more general solution for property matching. This
approach will use machine learning on numerous features derived
from property values. The initial results look promising and the
approach will be described in an upcoming paper.

5.2 Entity Matching
We report some initial results based on manual match rules with
several matching properties. We thus do not utilize the training
data and use the small set of 244 entity matches (#GTMatches)
in the provided training data as a subset of the golden truth for
evaluation. In particular, we count the number of false positives
(FP) and false negatives (FN) regarding the subset of the golden
truth. If a computed link connects entities from different perfect
clusters, it is counted as 1 false positive. Reversely, if two entities
from the same perfect cluster are not matched, it is counted as 1
false negative. For clustering, we specify the number of determined
output clusters, the maximum cluster sizes CSmax and the number
of matching entity pairs represented by the determined clusters.

As explained, we first deduplicate each source and then match
the entities of the deduplicated sources. We apply standard blocking
on the initial 3 letters of manufacturer and determine the similarity
of entity pairs based on the similarities of page titles and the com-
bination of the values of the properties resolution, manufacturer,
screen size and camera type. Table 4 reports the obtained results for
similarity threshold th = 0.6 exclusively for the sources containing
perfect matches based on the available golden truth indicating that
most matches from the golden truth are found for ebay.com.

After linking, several algorithms on the linking output can be
applied for single-source clustering. In Table 5 we report some re-
sults for the biggest source ebay.com and the clustering schemes
Connected components (CC), Correlation Clustering (CCP), Cen-
ter (Cntr) and Merge center (MCntr). Connected components and
Merge center create many false positives while achieving the lowest
number of false negatives. Center creates smaller clusters compared
to Correlation clustering.
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Table 6: Linking and clustering output

input #entities #links FP FN #pairs #cluster CSmax
CC-0.5 11303 665 1 0 1429 10763 13
CC-0.6 11303 727 0 0 1547 10719 13
CC-0.7 17407 1938 0 20 2980 16472 16
CC-0.8 17466 2137 0 20 3513 16452 16
CC-0.9 17922 1854 0 21 2957 17005 16
CCP-0.6 12966 1027 0 4 2402 12181 18
Cntr-0.6 13578 1212 0 6 2973 12705 19
MCntr-0.6 11766 780 2 1 1843 11136 16

After clustering each source, the entities inside a cluster are
fused into one entity and then all entities from different sources are
linked with each other. For linking entities across sources we used
the same linking configuration as for single sources and then we
applied CLIP [9] for entity resolution across sources. The results
of linking and clustering are shown in the left and right part of
Table 6 respectively.

The results of linking indicates that when single sources are
deduplicated by Connected components and lower thresholds or
by Merge center algorithm, the total number of entities is lower,
because many entities are fused as one single entity. Moreover in
the same cases the number of false negatives is very low. On the
other hand for Connected components and higher thresholds, there
is a big number of false negatives. As a result, the approach for
single-source deduplication has a substantial impact on the overall
match quality which deserves further investigation.
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