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ABSTRACT

Knowledge bases play crucial roles in a wide variety of information
systems, such as web search engines and intelligent personal as-
sistants. For responding to constantly fluctuating user information
demands, we aim to construct a large-scale and well-structured
comprehensive knowledge base from the world’s evolving data. To
maintain the quality of our large knowledge base at the production-
level, we carefully design not only to match entities but to incorpo-
rate various automatic and manual validation methods because it
is difficult to filter out all incorrect facts automatically in practice.
In this paper, we propose a novel plugin-based system architecture
satisfying the ability to rapidly identify mistakes and the system
extensibility. Our constructed knowledge base is already utilized
in Japanese Web services, and the number of entities in it keeps
growing steadily.
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1 INTRODUCTION

Knowledge Bases (KBs) have been supportive of many user activi-
ties such as browsing, searching or buying experiences on the Web.
Well-known search engines, such as Google, Bing and Yahoo! Inc.,
show not only the search results, called 10 blues links but the in-
formation as entity panels provided by their own KBs, i.e., Google
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KG!, Satori?, and Yahoo! KG [2], respectively. Our Japanese KB
(JKB) is one of the largest KBs in Japanese and has the same uses
as them.

KB construction systems differ depending on the application,
for example, NOUS [4] is a domain-specific KB construction sys-
tem, and many machine-learning-based approaches, such as Fon-
duer [9], have been proposed to maximize the F; score on the
quality of the output knowledge base. P. Suganthan et al. [5] pro-
posed that industrial systems are considerably differerent to those
in academia regarding objectives; therefore, we cannot merely adopt
such one-shot KB construction systems. The main objective of our
KB construction system is not to maximize F;, but to maintain high
precision at all time, while trying to improve recall over time, be-
cause displaying incorrect information leads to losing our trust.
Since the qualities of KBs include various types of measurement
such as the precision and recall of the entity matching, the ratio of
invalid or incorrect data, the ratio of missing relation etc., we de-
sign that our KB construction system can control its measurement
and evaluate each algorithm or software component one by one.
Therefore, plugin-based system architectures are critical to satis-
fying many system requirements such as the ability to fix incorrect
data immediately and the interchangeability of each method. This
plugin-based system allows to implement various algorithms and
also satisfy business requirements, while the system focuses on
ensuring our SLAs and scaling computation.

WOO [1] is one of the plugin-based KB construction systems
in Yahoo! Inc. and is designed to enable various types of products
to synthesize KBs. We describe the procedure of how to output
KBs from input data via the WOO as follows: (1) Import various
scheme of data and normalize input data to the common format,
(2) Match entities by some entity matching algorithms, (3) Assign
persistent ID, and (4) Export KB in any output format. In this paper,

!https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-
not.html
Zhttps://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
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Figure 1: Overview of our KB construction system architec-
ture. Solid arrows, dotted arrows, squared frames, rounded
cornered frames, and cylindrical objects represent data
flows between our system and the external data, data flows
within it, primary software components, input/output data,
and preserved data, respectively. Mapping files are for map-
pings of entity types and relations from input data to these
types of our ontology.

Table 1: Comparison of the input data regarding the pri-
mary information. We calculate data size from JKB format-
ted data.

Data sources Data size ~ Data Accuracy ~Complexity to use Update frequency

Wikidata 300 GB Fair Low (Json) about every two weeks
DBpedia (Japanese) 300 GB Fair Low (N-Triple) about once a year
Freebase 700 GB Fair Low (N-Triple) End at June 30, 2015°
Wikipedia (Japanese) 5.6 GB Good Medium about every two weeks
CP data (Japanese) ~ 500 GB  Excellent Low (Json, tsv, xml, etc.) ~every day

Crawled data ~ 1000 GB  Bad High every day

we extend the WOO regarding maintain high precision from mul-
tiple measurement perspectives and explore loose-coupling and
plugin-based architectures. In addition to the above four primary
functions of WOO, our KB construction systems validates incor-
rect data and completes missing relations and facts. We carefully
design the system architecture such that it is easily extensible.

2 OUR KB CONSTRUCTION SYSTEM
ARCHITECTURE

Our KB construction system is designed to handle hundreds of mil-
lions of entities covering our wide-ranging domain services (e.g.,
books, movies, companies, landmarks etc.,) and constructs a large
production-level KB every day by using Apache Spark. Our system
is mainly composed of twelve components shown in Figure 1, and
we roughly divide the roles into two groups whether input data
are Web-crawled data or not. We daily collect and update struc-
tured, or semi-structured data such as linked open data (LOD, e.g.,
Wikidata, Wikipedia, DBpedia, or Freebase), content provider (CP)
data (e.g., landmark, movie or book data), and Web-crawled data
by using our Web crawler. These three types of data have differ-
ent characteristics regarding their accuracy and the complexity of
how to extract key-value information, as shown in Table 1.
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Our system imports such structured and semi-structured data,
other than Web-crawled data, from the Importer to the Exporter
through other ten primary components. As shown in Table 1, ex-
tracting key-value information from Web-crawled data is another
challenge due to the combination of various input documents and
variation in extraction targets [3]; thus, we design our information
extraction (IE) method separately from the main components and
retrieve the IE data as additional data.

2.1 The JKB Scheme

We introduce a new scheme for KBs and explain its advantages.
The JKB is a set of entities. An entity is composed of a unique id,
types (e.g., PERsoN and WRITTEN WORK), and a set of Triples. A
Triple is similar to the RDF scheme? that is composed of subject,
predicate, and object. Moreover, triples in the JKB scheme have its
certainty score as with YAGO [8], the data type. We can maintain
the quality of the JKB by filtering triples following whether the cer-
tainty score is higher than a threshold or the data type is consistent
to our ontology. Since the JKB scheme is allowed to add arbitrary
meta information such as data source, we can easy to debug by
tracing the data source.

2.2 Primary Functions of Each Component

Importer is a data feed component. It supports arbitrary input
data scheme, except for Web-crawled data, as shown in Figure 1,
and unifies with the JKB scheme with the certainty score. We man-
ually assign the certainty score for every data source or predicate
taking into account its update frequency or estimated precision.

Attribute Converter converts the types and predicates of the in-
put data to our ontology by using the mapping file. For example,
we provide a mapping from the person-type in Wikidata such as
https://www.wikidata.org/wiki/Q215627 to the PERSON type in our
ontology. We traverse the type hierarchy of each LOD and semi-
automatically construct type mappings from LODs to the JKB. We
show the semi-automatical steps of constructing person-mappings
from the Wikidata to the JKB as follows:

(1) We judge whether the mapping from the type in Wikidata®
to the type in our ontology is correct.

(2) If the previous step passes, we automatically collect candi-
date mappings between all subclasses of the type in Wiki-
data and the type in our ontology.

(3) We sample the mapping results and manually check the cor-
rectness of the above candidate mappings.

Entity Matcher outputs entity clusters, which groups the same
entities. The Entity Matcher is mainly composed of three steps,
rule-based matchings, graph-based matchings and filtering unnec-
essary entity clusters and their attributes. First, accurate match-
ings are conducted by rule-based matchings. Second, we create
blocks of candidate entity clusters with weak matching methods
(e.g., name matching) to reduce the computation time. We connect
edges between related entity clusters of each block with more strict

Shttps://plus.google.com/u/0/109936836907132434202/posts/bu3z2wVqcQc
*https://www.w3.org/TR/rdf11-concepts/
Shttps://www.wikidata.org/wiki/Q215627
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matching methods (e.g., name and birthdate) than blocking match-
ing and extract cliques from each entity cluster to entity cluster
graph. Third, the Entity Matcher removes entity clusters whose
attribute certainties are zero and unmapped attributes at the At-
tribute Converter.

ID Assigner assigns a unique ID to each entity cluster based on
the set of data sources of entities in the cluster. For example, if
the ID of an entity cluster composed of two entities derived from
“Wikidata ID: 100” and “DBpedia ID: 2000” is “JKB ID: 300", we
save two relations as follows: “Wikidata ID: 100" — “JKB ID: 300”
and “DBpedia ID: 2000” — “JKB ID: 300”.

We preserve the relations between the ID and the set of data
sources on Apache HBase®, which is the Hadoop database, as the
ID Table. The ID Assigner ensures that the same entity clusters
compared to the past ones inherit to the past ID in the following
steps:

(1) Getthe past JKB IDs of the entities in the given entity cluster
by cross-referencing data sources of the entities in the entity
cluster and the past ID Table. The past JKB IDs are candidate
IDs for the given entity custer.

(2) Get all past data sources by cross-referencing the past JKB
IDs and the past ID Table.

(3) Calculate the ratio of the number of the intersections of past
and current data sources to the number of past data sources.

(4) Ifthe ratio is greater than 0.5, assign the past ID to the entity
cluster; otherwise, assign a new ID and update the ID Table.

The ID is persistent across the time with the ID Assigner.

Additional Data Combiner combines entities from the additional
data whose scheme is the same as the JKB’s; thus, the Additional
Data Combiner incorporates these entities into entity clusters from
the ID Assigner by using their IDs.

Entity Merger merges entities in each entity cluster into one en-
tity. We can define the certainty score to each Triple derived from
the data source. Entity Merger merges the same Triples of enti-
ties in the entity cluster into one Triple whose certainty score is
merged by a monotone increasing function. Since the main objec-
tive of our KB construction system is to maintain high precision at
all time, the Entity Merger is a simple but powerful component be-
cause the Validator can filter unreliable attributes accurately due
to the certainty score.

Object Converter converts the object of each Triple to the corre-
sponding entity-id by referring the ID Table. If the Triple is derived
from linked data and the object is described as the specific identi-
fier, it is easy for the Object Converter to convert the object to the
corresponding entity-id by using the ID Table. Since many objects
of triples are represented as literals, linking such literal to the cor-
responding entities is similar to entity-disambiguation problems.
Therefore, we should resolve the entity ambiguity from two
viewpoints, (1) the type consistency between the predicate and
our ontology and (2) distinguishing different objects with the same
name and the same type, such as a person’s name. We solve the
first problem by comparing our ontology with the range type of
the predicate and the second problem by converting the object only

Shttps://hbase.apache.org/

KDD DI2KG ’19, August 05, 2019, Anchorage, Alaska

son A
e: official URL

Web page 2
XX/AAA

S
1. Extract path patterns from

the JKB and Web pages.

Path Pattern: <dl>~ <dt> » <dd> ~ <a>

Confldence score: £ 3

L2
Path Pattern: <h3> ~ <p> ~ <a>
score:

1

e: Person C

2. Merge confi scores
and extract new Triple.

Official URI
Merged Confidence

Figure 2: Overview of Information Extractor of Our KB Con-
struction System.

when the entity whose pair of the object-type and the object-name
is uniquely defined in the JKB.

Attribute Completer completes attributes to entities based on
our ontology and their URL attributes. First, it completes attributes
by using a symmetric property defined in our ontology such as
the inverseOf property of owl:inverseOf’. Second, it extracts use-
ful information from the entity-related URL, for example, OGP3
images are useful attributes of these entities. The Attribute Com-
pleter partially addresses a well-known challenge; knowledge base
completion [7] by reasoning missing inversed Triples.

Validator removes invalid data based on (1) blacklists created via
the Manual Refiner, (2) inconsistency between Triples and our on-
tology, and (3) the results of fact checking by using crawl data (e.g.,
URLSs are deadlink or not). It also rewrites values to standardize def-
initions of the JKB, for example, the phonetic characters are unified
to hiragana (one of the writing systems of Japanese). We describe
the details of the component in Section 3.3.

Exporter filters and corrects Triples to avoid service-specific is-
sue, such as copyright problems, and outputs the JKB to a well-
known format (e.g., JSON or N-Triples).

Information Extractor extracts factual information from a large
set of Web-crawled data. Figure 2 illustrates an overview of the
method of the Information Extractor (IE). There has been exten-
sive work on IE from Web data [3]. We regard each Web page as
a Document Object Model (DOM) Tree and collect all DOM path
patterns related to a predicate by using the JKB.

The Information Extractor uses simple DOM-based method for
extracting information from semi-structured data based on distant
supervision [6]. First, we find path patterns from the subject to
the object with confidence scores. Path patterns are extracted from
DOM trees of a large amount of Web-crawled data and the JKB.
Second, we extract new information from the extracted path pat-
terns and merge the confidence score with our defined function in
the following.

https://www.w3.org/TR/owl-ref/#inverseOf-def
8http://ogp.me/
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Figure 3: Left is the number of entities in the JKB and right
is histories of the number of Triple in the JKB and excluded
invalid Triple data over the past 17 months

Given two confidence scores P4 and Pg, we define the new as-

sociative binary relation between these scores as follows:
PaPp

PoPp + a(1 = Pa)(1 - Pg)’
where « is a hyperparameter for the probability that two paths
from two other Web pages are the same and the extracted fact is
incorrect. We set, in practice, the hyperparameter « to 0.1 by the
preliminary experimental results. The above binary relation satis-
fies an associative law.

Py®Pg =

Manual Refiner can handle corner cases that are difficult to re-
move or refine automatically. First, we find the incorrect facts from
user feedback and our quantitative evaluation. Second, we exam-
ine if these facts are derived from a business requirement or rare
cases or not. If these facts are corner cases and required immedi-
ate modification, we add them to the blacklist. Third, we create a
new Triple with which we cannot import data due to the lack of
information, such as images, without any additional information.
The quality of JKB improves with the Manual Refiner.

3 QUANTITATIVE RESULTS

3.1 Overall JKB Results

Figure 3 shows the graphs of the number of entities and Triples of
the JKB over the past 17 months. The JKB steadily increased the
number of entities. We took in a large CP data on the 4 months
ago; thus, the graph in Figure 3 shows the sharp growth at that
time. Since the quality of validation and filtering methods has been
increasing, the number of excluded invalid Triples have risen con-
tinuously.

3.2 Identifiability Results

We first compared two JKBs separated by a week and confirmed
that only 0.0004% of entities changed their IDs within a week. We
also observed that more than 94% of the entities did not change
their IDs as shown in Figure 4. Since we stopped importing some
data sources and the Validator filters more and more invalid enti-
ties, some entities have deleted from the JKB. That is the reason
why there are about 6% of entity-IDs are inconsistent to the cur-
rent entity-IDs.

Second, we show the number of matched entities. The Entity
Matcher uses two algorithms as follows; (1) Rule-based matching
matches entities whose Wikipedia URL or some identifiers, such
as IMDDb ID and ISBN. (2) Graph-based matching matches entities

T. Yamazaki et al.
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Figure 4: Left is histories of id-consistency ratio between the
current and the past JKBs. Right is the number of matched
entities after rule-based matcher and graph-based matcher.

with their types, names, and reliable attributes (e.g., birthdate or
coordinates). We show the number of matched entities in Figure 4.
Due to the graph-based matching, the number of matched entities
increases. Graph-based matching does not match entities derived
from the same data sources to improve the precision. For this rea-
son, the precision of matching results is about 99%.

3.3 Automatical Validation and Completion
Results

The Validator automatically removes many invalid Triples to main-
tain the quality of the JKB, as shown in the right side of Figure 3.
The Validator filters (1) facts whose domain types are inconsis-
tent with the type of objects, (2) facts that are functional®, (3) facts
whose data types do not match objects (e.g., if the data type is URL,
the value must start with “http”), and (4) facts whose values do not
satisfy the data type format (e.g., date or ISBN). We observed that
97.7, 2.0, 0.2, 0.1% of all validation data are (1), (2), (3), and (4), re-
spectively. Note that a large amount of the invalid data of (1) is
mainly derived from unmapped entities from the LOD to our on-
tology; thus, we can reduce the number of filtering entities, and
this validation is one of the reasons that the JKB maintains high
accuracy.

The Attribute Completer completes about 1.4% of all facts to the
JKB.

4 CONCLUSION

We presented our plugin-based KB construction system that con-
structs scalable and production-level KB. We described an overview
of our plugin-based system architecture and each software com-
ponent. Our plugin-based KB system allows to implement various
entity-matching and validation algorithms and also satisfy busi-
ness requirements, while the system focuses on ensuring our SLAs
and scaling computation. Our constructed knowledge base, JKB, is
one of the largest KBs in Japanese and already utilized in Japanese
Web services.
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